
How to jit your jet
Felix Dangel

January 28, 2025

What Is JIT? An Example from the JAX Documentation

impo r t j a x
impo r t j a x . numpy as j n p

de f s e l u (x , a l p h a = 1 . 6 7 , lam = 1 . 0 5) :
r e t u r n lam * j n p . where (x > 0 , x , a l p h a * j n p . exp (x) − a l p h a)

x = j n p . a r ange (1 _000_000)
% t i m e i t s e l u (x) . b l o c k _ u n t i l _ r e a d y ()

6 . 3 9 ms ± 152 µs

s e l u _ j i t = j a x . j i t (s e l u)

Pre − comp i l e t he f u n c t i o n be f o r e t im i n g . . .
s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()

981 µs ± 1 . 7 µ s

1

What Is JIT? An Example from the JAX Documentation

impo r t j a x
impo r t j a x . numpy as j n p

de f s e l u (x , a l p h a = 1 . 6 7 , lam = 1 . 0 5) :
r e t u r n lam * j n p . where (x > 0 , x , a l p h a * j n p . exp (x) − a l p h a)

x = j n p . a r ange (1 _000_000)
% t i m e i t s e l u (x) . b l o c k _ u n t i l _ r e a d y ()

6 . 3 9 ms ± 152 µs

s e l u _ j i t = j a x . j i t (s e l u)

Pre − comp i l e t he f u n c t i o n be f o r e t im i n g . . .
s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()

981 µs ± 1 . 7 µ s

1

What Is JIT? An Example from the JAX Documentation

impo r t j a x
impo r t j a x . numpy as j n p

de f s e l u (x , a l p h a = 1 . 6 7 , lam = 1 . 0 5) :
r e t u r n lam * j n p . where (x > 0 , x , a l p h a * j n p . exp (x) − a l p h a)

x = j n p . a r ange (1 _000_000)
% t i m e i t s e l u (x) . b l o c k _ u n t i l _ r e a d y ()

6 . 3 9 ms ± 152 µs

s e l u _ j i t = j a x . j i t (s e l u)

Pre − comp i l e t he f u n c t i o n be f o r e t im i n g . . .
s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t s e l u _ j i t (x) . b l o c k _ u n t i l _ r e a d y ()

981 µs ± 1 . 7 µ s
1

Motivation: How Smart are Deep Learning Compilers?
Cool, faster run times for free. Does it know basic math, too?

Yes!
de f t r a n s p o s e (A , t imes = 1) :

r e s u l t = A
f o r _ i n range (t imes) :

r e s u l t = r e s u l t . T
r e t u r n r e s u l t

t r a n s p o s e _ 2 = lambda A : t r a n s p o s e (A , t imes =2)
t r a n s p o s e _ 1 0 = lambda A : t r a n s p o s e (A , t imes = 1 0)

A = j n p . a r a nge (1 _000_000) . r e s h ape (1 _000 , 1 _000)
% t i m e i t t r a n s p o s e (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 2 (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 1 0 (A) . b l o c k _ u n t i l _ r e a d y ()

1 . 8 4 ms ± 593 µs
3 . 5 8 ms ± 187 µs
1 5 . 9 ms ± 1 . 6 ms

After jit :
1 . 8 2 ms ± 382 µs
351 µs ± 14 µs
383 µs ± 1 3 . 9 µs

2

Motivation: How Smart are Deep Learning Compilers?
Cool, faster run times for free. Does it know basic math, too?

Yes!

de f t r a n s p o s e (A , t imes = 1) :
r e s u l t = A
f o r _ i n range (t imes) :

r e s u l t = r e s u l t . T
r e t u r n r e s u l t

t r a n s p o s e _ 2 = lambda A : t r a n s p o s e (A , t imes =2)
t r a n s p o s e _ 1 0 = lambda A : t r a n s p o s e (A , t imes = 1 0)

A = j n p . a r a nge (1 _000_000) . r e s h ape (1 _000 , 1 _000)
% t i m e i t t r a n s p o s e (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 2 (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 1 0 (A) . b l o c k _ u n t i l _ r e a d y ()

1 . 8 4 ms ± 593 µs
3 . 5 8 ms ± 187 µs
1 5 . 9 ms ± 1 . 6 ms

After jit :
1 . 8 2 ms ± 382 µs
351 µs ± 14 µs
383 µs ± 1 3 . 9 µs

2

Motivation: How Smart are Deep Learning Compilers?
Cool, faster run times for free. Does it know basic math, too?

Yes!

de f t r a n s p o s e (A , t imes = 1) :
r e s u l t = A
f o r _ i n range (t imes) :

r e s u l t = r e s u l t . T
r e t u r n r e s u l t

t r a n s p o s e _ 2 = lambda A : t r a n s p o s e (A , t imes =2)
t r a n s p o s e _ 1 0 = lambda A : t r a n s p o s e (A , t imes = 1 0)

A = j n p . a r a nge (1 _000_000) . r e s h ape (1 _000 , 1 _000)
% t i m e i t t r a n s p o s e (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 2 (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 1 0 (A) . b l o c k _ u n t i l _ r e a d y ()

1 . 8 4 ms ± 593 µs
3 . 5 8 ms ± 187 µs
1 5 . 9 ms ± 1 . 6 ms

After jit :
1 . 8 2 ms ± 382 µs
351 µs ± 14 µs
383 µs ± 1 3 . 9 µs

2

Motivation: How Smart are Deep Learning Compilers?
Cool, faster run times for free. Does it know basic math, too? Yes!

de f t r a n s p o s e (A , t imes = 1) :
r e s u l t = A
f o r _ i n range (t imes) :

r e s u l t = r e s u l t . T
r e t u r n r e s u l t

t r a n s p o s e _ 2 = lambda A : t r a n s p o s e (A , t imes =2)
t r a n s p o s e _ 1 0 = lambda A : t r a n s p o s e (A , t imes = 1 0)

A = j n p . a r a nge (1 _000_000) . r e s h ape (1 _000 , 1 _000)
% t i m e i t t r a n s p o s e (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 2 (A) . b l o c k _ u n t i l _ r e a d y ()
% t i m e i t t r a n s p o s e _ 1 0 (A) . b l o c k _ u n t i l _ r e a d y ()

1 . 8 4 ms ± 593 µs
3 . 5 8 ms ± 187 µs
1 5 . 9 ms ± 1 . 6 ms

After jit :
1 . 8 2 ms ± 382 µs
351 µs ± 14 µs
383 µs ± 1 3 . 9 µs 2

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

Stretching It a Bit More

Assume we have a sequence of vectors X =
(
x1 . . . xS

)
and we want to

1. Compute a sequence of matrix-vector products, Wx1, . . . ,WxS

2. Sum the results,
∑S

s=1 Wxs

D Quick-and-dirty way: (W @ X).sum(1) 44.8 ms ± 13.6 ms

D Quick-and-dirty but jit ed 57.5 ms ± 15.3 ms

D A smart way: W @ X.sum(1) 697 µs ± 111 µs

But is this really an important limitation?

3

How to jit your jet :
—

Accelerating Differential Operators by
Teaching Compilers About Linearity

4

Running Example: The Laplacian

∆f(x) :=
D∑

d=1

∂2f(x)
∂x2

d
= Tr(∇2f(x))

1. PINNs: Solving PDEs with NNs

L f(x) = a(x) on Ω

B f(x) = b(x) on ∂Ω

min
θ

∫
Ω

(Lfθ(x)− a(x))2dx

+

∫
∂Ω

(Bfθ(x)− b(x))2ds

2. VMC: Finding quantum ground states
min
θ

⟨fθ(x)|H |fθ(x)⟩ / ⟨fθ(x)| fθ(x)⟩

5

Running Example: The Laplacian

∆f(x) :=
D∑

d=1

∂2f(x)
∂x2

d
= Tr(∇2f(x))

1. PINNs: Solving PDEs with NNs

L f(x) = a(x) on Ω

B f(x) = b(x) on ∂Ω

min
θ

∫
Ω

(Lfθ(x)− a(x))2dx

+

∫
∂Ω

(Bfθ(x)− b(x))2ds

2. VMC: Finding quantum ground states
min
θ

⟨fθ(x)|H |fθ(x)⟩ / ⟨fθ(x)| fθ(x)⟩

5

Running Example: The Laplacian

∆f(x) :=
D∑

d=1

∂2f(x)
∂x2

d
= Tr(∇2f(x))

1. PINNs: Solving PDEs with NNs

L f(x) = a(x) on Ω

B f(x) = b(x) on ∂Ω

min
θ

∫
Ω

(Lfθ(x)− a(x))2dx

+

∫
∂Ω

(Bfθ(x)− b(x))2ds

2. VMC: Finding quantum ground states
min
θ

⟨fθ(x)|H |fθ(x)⟩ / ⟨fθ(x)| fθ(x)⟩

5

Running Example: The Laplacian

∆f(x) :=
D∑

d=1

∂2f(x)
∂x2

d
= Tr(∇2f(x))

1. PINNs: Solving PDEs with NNs

L f(x) = a(x) on Ω

B f(x) = b(x) on ∂Ω

min
θ

∫
Ω

(Lfθ(x)− a(x))2dx

+

∫
∂Ω

(Bfθ(x)− b(x))2ds

2. VMC: Finding quantum ground states
min
θ

⟨fθ(x)|H |fθ(x)⟩ / ⟨fθ(x)| fθ(x)⟩

5

How to Compute the Laplacian?

Naive: Use nested first-order AD

∇x

(
(∇xf)⊤ v

)
=

(
∇2

xf
)
v

One element per HVP

∆f =
D∑

d=1

e⊤
d
(
∇2

xf
)
ed

Is there a better way?

6

How to Compute the Laplacian?

Naive: Use nested first-order AD

∇x

(
(∇xf)⊤ v

)
=

(
∇2

xf
)
v

One element per HVP

∆f =
D∑

d=1

e⊤
d
(
∇2

xf
)
ed

Is there a better way?

6

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

Taylor

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

Taylor

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

Taylor

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

Taylor

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

Taylor

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

Taylor

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

Taylor

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

Taylor

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

(f(x), ∂f(x(t))
∂t , ∂

2f(x(t))
∂t2)

Taylor

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

(x, ∂x(t)
∂t , ∂

2x(t)
∂t2)

Taylor

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Better: Use Higher-order Forward Mode (Taylor Mode)
High-level idea: Consider a function f(x)

Path in input space
x(t), t ∈ [−ϵ, ϵ]

Path in output space
f(x(t))

f

Truncated Taylor series
f(x(t)) ≈ f0 + tf1 + 1

2 t
2f2

(f(x), ∂f(x(t))
∂t , ∂

2f(x(t))
∂t2)

jet

Truncated Taylor series
x(t) ≈ x + tv1 +

1
2 t

2v2

(x, ∂x(t)
∂t , ∂

2x(t)
∂t2)

jet

Taylor mode

From wikipedia:
In mathematics, the jet is an operation that takes a differentiable function f and
produces a polynomial, the Taylor polynomial (truncated Taylor series) of f.

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Taylor Mode for a Single Function
Consider a path in input space: x(t) = x + tv1 +

1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x

1 v1

2 v2

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function
Consider a path in input space: x(t) = x + tv1 +

1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1

2 v2

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function

Consider a path in input space: x(t) = x + tv1 +
1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1
∂f
∂x

∂x
∂t

2 v2

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function

Consider a path in input space: x(t) = x + tv1 +
1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1
∂f
∂x

∂x
∂t

2 v2
∂2f
∂x2

∂x
∂t

∂x
∂t

+
∂f
∂x

∂2x
∂t2

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function

Consider a path in input space: x(t) = x + tv1 +
1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1
∂f
∂x

v1

2 v2
∂2f
∂x2v1v1 +

∂f
∂x

v2

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function

Consider a path in input space: x(t) = x + tv1 +
1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1 ∂f[v1]

2 v2 ∂2f[v1, v1] + ∂f[v2]

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for a Single Function

Consider a path in input space: x(t) = x + tv1 +
1
2 t

2v2

k
∂kx(t)
∂tk

∣∣∣∣
t=0

∂kf(x(t))
∂tk

∣∣∣∣
t=0

0 x f(x)

1 v1 ∂f[v1]

2 v2 ∂2f[v1, v1] + ∂f[v2]

f0, f1, f2 = jet(f)(x, v1, v2)

8

Taylor Mode for Function Compositions
Next, let f = g ◦ h.

∂kx(t)
∂tk

∣∣∣∣
t=0

∂kh(x(t))
∂tk

∣∣∣∣
t=0

∂kg(h(x(t)))
∂tk

∣∣∣∣
t=0

x h(x)

v1 ∂h[v1]

v2 ∂2h[v1, v1] + ∂h[v2]

9

Taylor Mode for Function Compositions
Next, let f = g ◦ h.

∂kx(t)
∂tk

∣∣∣∣
t=0

∂kh(x(t))
∂tk

∣∣∣∣
t=0

∂kg(h(x(t)))
∂tk

∣∣∣∣
t=0

x(0) x(1)

v(0)1 v(1)1

v(0)2 v(1)2

9

Taylor Mode for Function Compositions
Next, let f = g ◦ h.

∂kx(t)
∂tk

∣∣∣∣
t=0

∂kh(x(t))
∂tk

∣∣∣∣
t=0

∂kg(h(x(t)))
∂tk

∣∣∣∣
t=0

x(0) x(1) g(x(1))

v(0)1 v(1)1 ∂g[v(1)1]

v(0)2 v(1)2 ∂2g[v(1)1 , v(1)1] + ∂g[v(1)2]

9

Taylor Mode for Function Compositions
Next, let f = g ◦ h.

∂kx(t)
∂tk

∣∣∣∣
t=0

∂kh(x(t))
∂tk

∣∣∣∣
t=0

∂kg(h(x(t)))
∂tk

∣∣∣∣
t=0

x(0) x(1) x(2)

v(0)1 v(1)1 v(2)1

v(0)2 v(1)2 v(2)2

9

Taylor Mode for Function Compositions
Next, let f = g ◦ h.

∂kx(t)
∂tk

∣∣∣∣
t=0

∂kh(x(t))
∂tk

∣∣∣∣
t=0

∂kg(h(x(t)))
∂tk

∣∣∣∣
t=0

=
∂kf(x(t))

∂tk

∣∣∣∣
t=0

x(0) x(1) x(2) = f(x(0))

v(0)1 v(1)1 v(2)1 = ∂f[v(0)1]

v(0)2 v(1)2 v(2)2 = ∂2f[v(0)1 , v(0)1] + ∂f[v(0)2]

9

Computing the Laplacian with Taylor Mode
Remember the Laplacian D∑

d=1

∂2f(x)
∂x2

d
=

D∑
d=1

∂2f[ed, ed]

jet(f) (x, v1, v2)

x(0) x(1) x(2) = f(x(0))

v(0)1 v(1)1 v(2)1 = ∂f[v(0)1]

v(0)2 v(1)2 v(2)2 = ∂2f[v(0)1 , v(0)1] + ∂f[v(0)2]

10

Computing the Laplacian with Taylor Mode
Remember the Laplacian D∑

d=1

∂2f(x)
∂x2

d
=

D∑
d=1

∂2f[ed, ed]

jet(f) (x, v1=ed, v2=0)

x(0) x(1) x(2) = f(x(0))

ed v(1)1 v(2)1 = ∂f[ed]

0 v(1)2 v(2)2 = ∂2f[ed, ed] + ∂f[0]

10

Computing the Laplacian with Taylor Mode
Remember the Laplacian D∑

d=1

∂2f(x)
∂x2

d
=

D∑
d=1

∂2f[ed, ed]

vmap(jet(f)(x, •, •)) (V1=I, V2=0)

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d} {v(2)2,d} = {∂2f[ed, ed]}

10

Computing the Laplacian with Taylor Mode
Remember the Laplacian D∑

d=1

∂2f(x)
∂x2

d
=

D∑
d=1

∂2f[ed, ed]

vmap(jet(f)(x, •, •)) (V1=I, V2=0) [2].sum()

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d} {v(2)2,d} = {∂2f[ed, ed]}

∑
d{v

(2)
2,d} = ∆f(x(0))

10

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d} {v(2)2,d} = {∂2f[ed, ed]}

∑
d{v

(2)
2,d} = ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d}
∑

d{v
(2)
2,d} = ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d}
∑

d{∂2g[v(1)1,d,v
(1)
1,d]}

+
∑

d{∂g[v
(1)
2,d]}

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} {v(1)2,d}
∑

d{∂2g[v(1)1,d,v
(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0} ∑
d{v

(1)
2,d}

∑
d{∂2g[v(1)1,d,v

(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0}
∑

d{∂2h[ed,ed]}
+

∑
d{∂h[0]}

∑
d{∂2g[v(1)1,d,v

(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

{0}
∑

d{∂2h[ed,ed]}
+∂h[

∑
d{0}]

∑
d{∂2g[v(1)1,d,v

(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients

After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

∑
d{0}

∑
d{∂2h[ed,ed]}
+∂h[

∑
d{0}]

∑
d{∂2g[v(1)1,d,v

(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

Simplifying the Laplacian Using Linearity

jit(vmap(jet(f)))

Before: 1+ D+ D coefficients After: 1+ D+ 1 coefficients

x(0) x(1) x(2) = f(x(0))

{ed} {v(1)1,d} {v(2)1,d} = {∂f[ed]}

∑
d{0}

∑
d{∂2h[ed,ed]}
+∂h[

∑
d{0}]

∑
d{∂2g[v(1)1,d,v

(1)
1,d]}

+∂g[
∑

d{v
(1)
2,d}]

= ∆f(x(0))

11

How Important Is This?
Collapsing the aggregation into Taylor mode . . .

D Is already done (forward Laplacian [Li et al.,

2023]), but manually

D Generalizes to higher orders, e.g.∑
d

∂Kf
∂xK

d

D Also applies to randomized Taylor mode
[Shi et al., 2024]

D Is currently not done by jit (I think)

12

How Important Is This?
Collapsing the aggregation into Taylor mode . . .

D Is already done (forward Laplacian [Li et al.,

2023]), but manually

D Generalizes to higher orders, e.g.∑
d

∂Kf
∂xK

d

D Also applies to randomized Taylor mode
[Shi et al., 2024]

D Is currently not done by jit (I think)

12

How Important Is This?
Collapsing the aggregation into Taylor mode . . .

D Is already done (forward Laplacian [Li et al.,

2023]), but manually

D Generalizes to higher orders, e.g.∑
d

∂Kf
∂xK

d

D Also applies to randomized Taylor mode
[Shi et al., 2024]

D Is currently not done by jit (I think)

12

How Important Is This?
Collapsing the aggregation into Taylor mode . . .

D Is already done (forward Laplacian [Li et al.,

2023]), but manually

D Generalizes to higher orders, e.g.∑
d

∂Kf
∂xK

d

D Also applies to randomized Taylor mode
[Shi et al., 2024]

D Is currently not done by jit (I think)

12

First Insights and Current Status

Probing JAX (on a 5 → 1024 → 768 → 512 → 256 → 128 → 1 tanh-MLP):
D Laplacian via jax.hessian : 168 ms ± 10.7 ms (1.0 x)

D Laplacian via folx.forward_laplacian 109 ms ± 4.19 ms (0.6 x)

D Laplacian via jax.experimental.jet 263 ms ± 20.5 ms (1.6 x)

PyTorch prototype:
D Can trace a function, replace ops with Taylor mode (jet)

D Can vmap and capture the corresponding graph (vmap(jet))

D Missing: Simplifications based on linearity (jit(vmap(jet)))

13

First Insights and Current Status

Probing JAX (on a 5 → 1024 → 768 → 512 → 256 → 128 → 1 tanh-MLP):
D Laplacian via jax.hessian : 168 ms ± 10.7 ms (1.0 x)

D Laplacian via folx.forward_laplacian 109 ms ± 4.19 ms (0.6 x)

D Laplacian via jax.experimental.jet 263 ms ± 20.5 ms (1.6 x)

PyTorch prototype:
D Can trace a function, replace ops with Taylor mode (jet)

D Can vmap and capture the corresponding graph (vmap(jet))

D Missing: Simplifications based on linearity (jit(vmap(jet)))

13

First Insights and Current Status

Probing JAX (on a 5 → 1024 → 768 → 512 → 256 → 128 → 1 tanh-MLP):
D Laplacian via jax.hessian : 168 ms ± 10.7 ms (1.0 x)

D Laplacian via folx.forward_laplacian 109 ms ± 4.19 ms (0.6 x)

D Laplacian via jax.experimental.jet 263 ms ± 20.5 ms (1.6 x)

PyTorch prototype:
D Can trace a function, replace ops with Taylor mode (jet)

D Can vmap and capture the corresponding graph (vmap(jet))

D Missing: Simplifications based on linearity (jit(vmap(jet)))

13

First Insights and Current Status

Probing JAX (on a 5 → 1024 → 768 → 512 → 256 → 128 → 1 tanh-MLP):
D Laplacian via jax.hessian : 168 ms ± 10.7 ms (1.0 x)

D Laplacian via folx.forward_laplacian 109 ms ± 4.19 ms (0.6 x)

D Laplacian via jax.experimental.jet 263 ms ± 20.5 ms (1.6 x)

PyTorch prototype:
D Can trace a function, replace ops with Taylor mode (jet)

D Can vmap and capture the corresponding graph (vmap(jet))

D Missing: Simplifications based on linearity (jit(vmap(jet)))

13

The Obligatory LLM Slide Before We Are Done

For fun, let’s ask an LLM to simplify the
compute graph for us.

Does not work.

In PyTorch, even the un jit ted jet is a
good alternative for computing Laplacians:

Hessian trace: 83.4 ± 9.2 ms

PyTorch jet: 84.3 ± 8.8 ms

14

The Obligatory LLM Slide Before We Are Done

For fun, let’s ask an LLM to simplify the
compute graph for us.

Does not work.

In PyTorch, even the un jit ted jet is a
good alternative for computing Laplacians:

Hessian trace: 83.4 ± 9.2 ms

PyTorch jet: 84.3 ± 8.8 ms

14

The Obligatory LLM Slide Before We Are Done

For fun, let’s ask an LLM to simplify the
compute graph for us.

Does not work.

In PyTorch, even the un jit ted jet is a
good alternative for computing Laplacians:

Hessian trace: 83.4 ± 9.2 ms

PyTorch jet: 84.3 ± 8.8 ms

14

Take Home Messages

act then sum
jit
−→ sum then act

1. We can simplify important diff ops: “pull the sum into Taylor mode” (jet).

2. This could be done by a compiler (jit) and requires the concept of linearity.
3. Doing so would contain currently specialized implementations without extra work

forward_laplacian(f) = jit(sum(vmap(jet(f))))

Points for discussion:
D How linear algebra-aware should DL compilers be?
D Can we use diff ops to regularize NNs and enforce (un)desirable properties?
D What is the mathematical concept for “collapsing” multiple jets?

15

Take Home Messages

act then sum
jit
−→ sum then act

1. We can simplify important diff ops: “pull the sum into Taylor mode” (jet).

2. This could be done by a compiler (jit) and requires the concept of linearity.

3. Doing so would contain currently specialized implementations without extra work
forward_laplacian(f) = jit(sum(vmap(jet(f))))

Points for discussion:
D How linear algebra-aware should DL compilers be?
D Can we use diff ops to regularize NNs and enforce (un)desirable properties?
D What is the mathematical concept for “collapsing” multiple jets?

15

Take Home Messages

act then sum
jit
−→ sum then act

1. We can simplify important diff ops: “pull the sum into Taylor mode” (jet).

2. This could be done by a compiler (jit) and requires the concept of linearity.
3. Doing so would contain currently specialized implementations without extra work

forward_laplacian(f) = jit(sum(vmap(jet(f))))

Points for discussion:
D How linear algebra-aware should DL compilers be?
D Can we use diff ops to regularize NNs and enforce (un)desirable properties?
D What is the mathematical concept for “collapsing” multiple jets?

15

Take Home Messages

act then sum
jit
−→ sum then act

1. We can simplify important diff ops: “pull the sum into Taylor mode” (jet).

2. This could be done by a compiler (jit) and requires the concept of linearity.
3. Doing so would contain currently specialized implementations without extra work

forward_laplacian(f) = jit(sum(vmap(jet(f))))

Points for discussion:
D How linear algebra-aware should DL compilers be?
D Can we use diff ops to regularize NNs and enforce (un)desirable properties?
D What is the mathematical concept for “collapsing” multiple jets?

15

References I

Ruichen Li, Haotian Ye, Du Jiang, Xuelan Wen, Chuwei Wang, Zhe Li, Xiang Li, Di He, Ji Chen, Weiluo Ren,
et al. Forward laplacian: A new computational framework for neural network-based variational monte
carlo, 2023.

Zekun Shi, Zheyuan Hu, Min Lin, and Kenji Kawaguchi. Stochastic taylor derivative estimator: Efficient
amortization for arbitrary differential operators. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

16

	References

	anm1:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.3:
	0.2:
	0.1:
	0.0:

