Convolutions and More as Einsum

Felix Dangel

NeurIPS 2024

Conceptual Overview

Convolution

*

=

Conceptual Overview

Convolution

*

=

Tensor networks

Conceptual Overview

Convolution

*

=

Tensor networks

Evaluation

einsum("c_in i1 i2, k1 o1 i1, k2 o2 i2, c_out c_in k1 k2 -> c_out o1 o2", X, Pi1, Pi2, W)

Conv.

w

- Court

Conv.

w - cout

Χ

 $old X \ o [\![old X]\!]$

$$\begin{split} \mathbf{X} & \\ \to \llbracket \mathbf{X} \rrbracket & \\ \to \mathbf{1}^{\top}\llbracket \mathbf{X} \rrbracket & \end{split}$$

$$\begin{split} & \textbf{X} \\ & \rightarrow \llbracket \textbf{X} \rrbracket \\ & \rightarrow \textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \\ & \rightarrow \left(\textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \right)^{\top} \left(\textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \right) \end{split}$$

$$\begin{split} & \textbf{X} \\ & \rightarrow \llbracket \textbf{X} \rrbracket \\ & \rightarrow \textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \\ & \rightarrow \left(\textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \right)^{\top} \left(\textbf{1}^{\top}\llbracket \textbf{X} \rrbracket \right) \end{split}$$

Tensor Network

 $(1) - k'_1$

k'

Time: **9.87 ms**

Time: 2.69 ms (3.7 x)

(features.1.0.block.0 convolution of ConvNeXt-base with (32, 3, 256, 256) input)

 \mathbf{V}

Non-conventional operations can be much cheaper with tensor networks

State of the art

$$\begin{split} & \textbf{X} \\ & \rightarrow \llbracket \textbf{X} \rrbracket \\ & \rightarrow \textbf{1}^{\top} \llbracket \textbf{X} \rrbracket \\ & \rightarrow \left(\textbf{1}^{\top} \llbracket \textbf{X} \rrbracket \right)^{\top} \left(\textbf{1}^{\top} \llbracket \textbf{X} \rrbracket \right) \end{split}$$

Tensor Network

Time: 9.87 ms Extra memory: 3.07 GiB Time: **2.69 ms (3.7 x)** Extra memory: **0 MiB**

(features.1.0.block.0 convolution of ConvNeXt-base with (32, 3, 256, 256) input)

ImageNet GPU benchmark (NVIDIA A40) with (128, 3, 256, 256) inputs

Net	Optimizer	Per-iteration [s]	Peak memory [GiB]
ResNet18	SGD	1.17 · 10 ^{−1} (1.00 x)	3.62 (1.00 x)
VGG19	SGD	6.90 · 10 ⁻¹ (1.00 x)	14.1 (1.00 x)

ImageNet GPU benchmark (NVIDIA A40) with (128, 3, 256, 256) inputs

Net	Optimizer	Per-iteration [s]	Peak memory [GiB]
ResNet18	SGD SINGD	$ \begin{array}{c c} 1.17 \cdot 10^{-1} & (1.00 \text{ x}) \\ 1.94 \cdot 10^{-1} & (1.67 \text{ x}) \end{array} \end{array} $	3.62 (1.00 x) 4.54 (1.25 x)
VGG19	SGD SINGD	6.90 · 10 ⁻¹ (1.00 x) 1.02 (1.48 x)	14.1 (1.00 x) 32.1 (2.28 x)

(SINGD uses KFAC-reduce and diagonal pre-conditioners which are updated every step)

ImageNet GPU benchmark (NVIDIA A40) with (128, 3, 256, 256) inputs

Net	Optimizer	Per-iteration [s]	Peak memory [GiB]
ResNet18	SGD	$1.17 \cdot 10^{-1} (1.00 \text{ x})$	3.62(1.00 x)
	SINGD+TN	$1.56 \cdot 10^{-1} (1.33 \text{ x})$	3.63 (1.00 x)
VGG19	SGD	6.90 · 10 ⁻¹ (1.00 x)	14.1 (1.00 x)
	SINGD	1.02 (1.48 x)	32.1 <mark>(2.28 x)</mark>
	SINGD+TN	8.01 · 10 ^{−1} (1.16 x)	16.1 <mark>(</mark> 1.14 x)

(SINGD uses KFAC-reduce and diagonal pre-conditioners which are updated every step)

Significantly reduces the computational gap of second-order methods.

Convolutions and More as einsum

 \sim

- + TN perspective simplifies the transfer of algorithmic ideas
- + Enables flexible/faster implementations of black box routines
- + Relies on automatically efficient evaluation inside einsum

Convolutions and More as einsum

- + TN perspective simplifies the transfer of algorithmic ideas
- + Enables flexible/faster implementations of black box routines
- + Relies on automatically efficient evaluation inside einsum

Try it out!

```
from einconv.expressions import kfac_reduce
from torch import einsum
```

```
# create the tensor network
equation, operands, shape = kfac_reduce.
    einsum_expression(..., simplify=True)
# evaluate it
einsum(equation, *operands).reshape(shape)
```


pip install einconv

Convolutions and More as einsum

- + TN perspective simplifies the transfer of algorithmic ideas
- + Enables flexible/faster implementations of black box routines
- + Relies on automatically efficient evaluation inside einsum

Try it out!

```
from einconv.expressions import kfac_reduce
from torch import einsum
```

```
# create the tensor network
equation, operands, shape = kfac_reduce.
    einsum_expression(..., simplify=True)
# evaluate it
einsum(equation, *operands).reshape(shape)
```


pip install einconv

Paper: arxiv/2307.02275
Code: github.com/f-dangel/einconv

- Runa Eschenhagen, Alexander Immer, Richard E. Turner, Frank Schneider, and Philipp Hennig. Kronecker-factored approximate curvature for modern neural network architectures. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- Wu Lin, Felix Dangel, Runa Eschenhagen, Kirill Neklyudov, Agustinus Kristiadi, Richard E. Turner, and Alireza Makhzani. Structured inverse-free natural gradient descent: Memory-efficient & numerically-stable KFAC. In International Conference on Machine Learning (ICML), 2024.