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We derive einsum implementations of various operations related to convolution.
This simplifies the transfer of algorithmic ideas & speeds up non-traditional routines.

Overview & Motivation: Provide a Simplified Perspective onto Convolutions Contribution: Convolutions and More as Einsum

Despite their simple intuition, convolutions are more tedious than fully-connected layers. We derive the tensor networks (einsum implementations) for various operations related to convolution (many more in the paper!).
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Background: Tensor Networks in a Nutshell Application: Improving an ICML 2024 Second-order Optimizer

Tensor networks are diagrams that represent tensor multiplications and translate to einsum expressions. Non-traditional convolution-related operations can be more efficient with einsum.
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..and (3) automatically efficient thanks to contraction optimizers (opt_einsum). (first convolution of ConvNeXt-base with (32, 3, 256, 256) input, on an A40)

Try it yourself: pip install einconv



