Convolutions and More as Einsum:
A Tensor Network Perspective with Advances for Second-Order Methods

Felix Dangel

Vector Institute (Canada)

VECTOR
INSTITUTE

We derive einsum implementations of various operations related to convolution.
This simplifies the transfer of algorithmic ideas & speeds up non-traditional routines.

Overview & Motivation: Provide a Simplified Perspective onto Convolutions Contribution: Convolutions and More as Einsum

Despite their simple intuition, convolutions are more tedious than fully-connected layers. We derive the tensor networks (einsum implementations) for various operations related to convolution (many more in the paper!).

Convolution Tensor networks - Starting point: convolution as einsum (NeurlPS 2019) im2col weight VJP Input V.JP

O1 Concept for MLPs for CNNs T

- Y = X W
Approximate Hessian diagonal 1989 2023 Cou© = Z Cini(k,0) 7Y CounCink I./—@\k

Kronecker-factored curvature (KFAC, KFRA, KFLR) 2015, 2017, 2017 2016, 2020, 2020 CinK
02 k Kronecker-factored quasi-Newton methods (KBFGS) 2021 2022 Z ZXCm i okWe. ook
Cin Cout

Neural tangent kernel (NTK) 2018 2019 Cink
I
k

Hessian rank 2021 2023
Gradient descent learning dynamics 2014 2023 X Y |

I 2

s » Convolution » Transpose convolution (input VJP)

Main idea: Make depen- - im2col for arbitrary dimensions - Equivalent of im2col
To reduce this complexity gap, we use the einsum formulation of dencies explicit through !) o
’ — KFAC for ConvNd (does not exist in APIs)

Evaluation convolution (NeurlPS 2019). index pattern tensor 1. - Easy-to-randomize VJPs — KFAC for ConvTransposeNd

einsum(”"c_in i1 1i2, k1 o1 i1, k2 02 i2, c_out c_in k1 k2 -> c_out o1 02", X, Pil, Pi2, W)

— stochastic backpropagation

Background: Tensor Networks in a Nutshell Application: Improving an ICML 2024 Second-order Optimizer

Tensor networks are diagrams that represent tensor multiplications and translate to einsum expressions. Non-traditional convolution-related operations can be more efficient with einsum.

-0 They are (1) easier to parse than index-heavy equations, . .. » Example: KFAC-reduce approximation (NeurlPS 2023) » Example: SINGD optimizer (ICML 2024) on CNNs
Operation Diagram Operation Diagram ' Tensor network

Scalar _@_ j_._ K ...(2) fun to work with through graphical manipulation, ... Net Optimizer Per-iteration [s] Peak memory [GiB]
. 01 0]

% SGD 1.17 - 10~ (1.00x) 3.62 (1.00 x
Vector E]—i

vmap by adding legs
Srery l P DY affing 1E9 : State of the art (standard API) K K ResNet18 SINGD 1.94.107"(1.67x) 4.54(1.25x
. . . . 1
Matrix i j AL I L X | SINGD+TN| 1.56-10-"(1.33x) 3.63 (1.00x
| 02 0) (1
)

)
)
)
'2 SGD | 6.90-10~"(1.00x 14.1(1.00)
)
)

— [X] (im2col)
Tensor i— C) - j
(i, k) G,1) (i,k)-<< I_@_ >>-(,‘,/) - Differentiate by removing tensors —1'[X] (average) K, VGG19 SINGD 102

(1.48 x 32.1(2.28x
%(fﬂxﬂ)T(lTﬂxﬂ) | SINGD+TN 8.01-107"(1.16 x) 16.1(1.14 x

Matricize E]—(i,j)«;
. P — o(HatiH{eb{v])
Flatt / . . \@| —_— = K
diag(A)— | 0 (j’ B k’) LA L Time: 9.87ms Time: 2.69 ms (3.7 x) Our einsum implementation reduces the overhead of a second-order

Trace —diag(a) ;J@_; | | o | Extra memory: 3.07 GiB Extra memory: 0 MiB method w.r.t. SGD by 50 % in time and up to 100 % in memory.

..and (3) automatically efficient thanks to contraction optimizers (opt_einsum). (first convolution of ConvNeXt-base with (32, 3, 256, 256) input, on an A40)

Try it yourself: pip install einconv

