
LATEX TikZposter

Lowering PyTorch’s Memory Consumption for Selective Differentiation
Samarth Bhatia, Felix Dangel

Lowering PyTorch’s Memory Consumption for Selective Differentiation
Samarth Bhatia, Felix Dangeliitdelhi

Indian Institute of Technology Delhi

We identify that some PyTorch layers save unnecessary tensors when parameters have
requires_grad = False and provide a fix to reduce memory without affecting runtime.

This is useful for fine-tuning setups that only compute gradients for a sub-set of parameters.

PyTorch sometimes retains tensors which are not required for backpropagation

Toy example: Let’s look at a CNN without pooling/activations.
We feed amini-batch which consumes 512MiBmemory. Each
intermediate tensor requires 512MiB memory. Here is the
forward pass’s memory consumption when different parame-
ters are trainable (approximates computation graph size).

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

Conclusion: PyTorch’s convolution stores the layer input if it
is differentiable, irrespective of the weight’s differentiability.
But we don’t need the input if the weight is non-differentiable!

Confirmation via torchviz :
weight.requires_grad = False

X.requires_grad = True

 ()

SumBackward0

self_sym_sizes: (7, 5, 10, 10)

ConvolutionBackward0

bias_sym_sizes_opt: (5,)
dilation : (1, 1)
groups : 1
input : [saved tensor]
output_padding : (0, 0)
padding : (0, 0)
stride : (1, 1)
transposed : False
weight : [saved tensor]

input
 (7, 3, 12, 12)

weight
 (5, 3, 3, 3)

AccumulateGrad

Summary:

W

X Z

W

X Z

W

X Z

/ : Non-/Differentiable, : Stored by AD

Fix: We provide a drop-in implementation which stores only the required tensors

Affected layers:
•Convolutions (nn.ConvNd)
• Batch norm in eval mode (nn.BatchNormNd)
•Transpose convolution (nn.ConvTransposeNd)
Interestingly, nn.Linear is optimized already!

W

X Z

Ours Other memory optimizations:
• nn.ReLU : Store boolean mask instead of float-
ing point tensor (4x reduction, soon 32x when
torch.bit is implemented)

• nn.Dropout : Only save random number genera-
tor state and re-compute dropout mask

Evaluation: Selective Differentiation in Practice
We evaluate on practical scenarios:

• ‘All’: Training the full net (baseline)
• ‘Input’: Only input differentiable
(style transfer, adversarial data)

• ‘Norm’: Only normalization layers
trainable (layer-norm fine-tuning)

• ‘Surgical’: Only trainable sub-
network (surgical fine-tuning) All Input Input (BN Eval) Norm Surgical

0

1

2

3

4

5

6

7

8

Pe
ak

m
em

or
y

[G
iB

]

1.00

Py
To

rc
h

1.09

+
M

em
Sa

ve

1.00

Py
To

rc
h

0.67

+
M

em
Sa

ve

1.00

Py
To

rc
h

0.18

+
M

em
Sa

ve

1.00

Py
To

rc
h

0.67

+
M

em
Sa

ve

1.00

Py
To

rc
h

0.88

+
M

em
Sa

ve

ResNet-101

All Input Norm Surgical
0

5

10

15

20

25

30

35

Pe
ak

m
em

or
y

[G
iB

]

1.00

Py
To

rc
h

0.95

+
M

em
Sa

ve

0.78

Py
To

rc
h

0.68

+
M

em
Sa

ve

0.86

Py
To

rc
h

0.68

+
M

em
Sa

ve

0.83

Py
To

rc
h

0.76

+
M

em
Sa

ve

T5

$ pip install memsave

$ model = memsave.convert(model)

Samarth is looking for a PhD position:

samarth.bhatia23@alumni.iitd.ac.in arXiv code

