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We identify that some PyTorch layers save unnecessary tensors when parameters have
requires_grad = False and provide a fix to reduce memory without affecting runtime.

This is useful for fine-tuning setups that only compute gradients for a sub-set of parameters.

PyTorch sometimes retains tensors which are not required for backpropagation

Toy example: Let’s look at a CNN without pooling/activations.
We feed amini-batch which consumes 512MiBmemory. Each
intermediate tensor requires 512MiB memory. Here is the
forward pass’s memory consumption when different parame-
ters are trainable (approximates computation graph size).
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Conclusion: PyTorch’s convolution stores the layer input if it
is differentiable, irrespective of the weight’s differentiability.
But we don’t need the input if the weight is non-differentiable!

Confirmation via torchviz :
weight.requires_grad = False

X.requires_grad = True

 ()

SumBackward0
------------------------------
self_sym_sizes: (7, 5, 10, 10)

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (5,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (0, 0)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
 (7, 3, 12, 12)

weight
 (5, 3, 3, 3)

AccumulateGrad
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Fix: We provide a drop-in implementation which stores only the required tensors

Affected layers:
•Convolutions ( nn.ConvNd )
• Batch norm in eval mode ( nn.BatchNormNd )
•Transpose convolution ( nn.ConvTransposeNd )
Interestingly, nn.Linear is optimized already!
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Ours Other memory optimizations:
• nn.ReLU : Store boolean mask instead of float-
ing point tensor (4x reduction, soon 32x when
torch.bit is implemented)

• nn.Dropout : Only save random number genera-
tor state and re-compute dropout mask

Evaluation: Selective Differentiation in Practice
We evaluate on practical scenarios:

• ‘All’: Training the full net (baseline)
• ‘Input’: Only input differentiable
(style transfer, adversarial data)

• ‘Norm’: Only normalization layers
trainable (layer-norm fine-tuning)

• ‘Surgical’: Only trainable sub-
network (surgical fine-tuning) All Input Input (BN Eval) Norm Surgical
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$ pip install memsave

$ model = memsave.convert(model)

Samarth is looking for a PhD position:

samarth.bhatia23@alumni.iitd.ac.in arXiv code


