Can We Remove the Square-Root in Adaptive Gradient Methods? #.:

A Second-Order Perspective
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Many adaptive methods can be interpreted as diagonal second-order methods with an
extra square root. We observe that removing the root, thus strengthening the second-order
perspective, does not harm their performance when proper changes are made.

Which Square Root Are We Talking About?

Many adaptive optimizers use statistics S in the form of the gradient outer product (GOP)
gg . The inverse square root of these statistics is then used to update the weights.

AdaGrad.

S« S+ 09"

< p — pdiag(S)""%g
RF-AdaGrad (ours):

S+ S+ agg'

p<— p — Adiag(S)'g

RmsProp:
S« (1—2)S+ 099"
< p— pdiag(S) g
RF-RmsProp:
S« (1—2)S+ fagg’
p+ p— fdiag(S)'g

Why remove it?
» Adaptive methods under-perform SGD on CNNs. Could it be due to the root?
» Make them more similar to natural-gradient methods that use the empirical Fisher (EF)

Our contributions
1. [Empirical] In modern training setups, root-free methods perform as well as SGD on CNNs
2. [Theoretical] Provide a clean interpretation of gg' as EF and preserve invariance
3. [Practical] Removing roots and inversions in methods with non-diagonal S

Clean Interpretation: Empirical Fisher as (Scaled) GOP

Standard empirical Fisher
Distribution factorized over individual labels

.
Observ. labels
dog

o

;éu. Iabelﬁst. /
- . N / -
single image [ "n
| |
m =
) \ f_,.

iy

N
ZEy,wp(y,-\x,-) [VM logp(y; | Xi)V; logp(y; | Xi)}

=1

[ Sampled Iabelﬂ
o

tiger

expectation approximation

[ Sampled Iabelﬂ N

N
pands V,.logp(yi | )V, logp(yi | x)] = g/
> i=1

I

Our empirical Fisher
Distribution over joint labels
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Empirical Observations When Removing the Square Root

Simply removing the root does not improve the performance of root-free methods.
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Through a second-order perspective, we identify some fixes to make them work well.
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1. [Standard nowadays] Non-constant learning rate schedule

2. [Bottom left box] Additional scaling, because densities for the Fisher must be normalized

(ov = 1 for sum; o = B for average)

3. [Bottom right box] Non-zero init. of preconditioner S, because it can be viewed as inverse covariance of a

Gaussian
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Inverse- and root-free updates accelerate
Kronecker-based methods based on gg ' in
half precision.
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Want to try the optimizer?

aah pip install sirfhshampoo
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Removing the root also allows us to design
matrix methods that don't require inversions,
e.g. a faster version of Shampoo.

Full-matrix and Kronecker-structured Adaptive Methods

Full-matrix methods aim to use S rather than diag(S), e.g. full-matrix AdaGrad:

S« S+09" pp—5Sg
But S is usually infeasible to store, which is why most methods impose additional
structure in their pre-conditioner, e.g. Kronecker structure in Shampoo (G := Mat(g)):
S1 < (1— 3,)$1+GG'
S, «+ (1—32)S,+G'G
As the pre-conditioner now differs from gg ', we need to decouple the concepts of
pre-conditioner and curvature approximation.

pe p— 5K 7 @84 g

We provide a unified recipe to incorporate any curvature info (e.g., gg') into
pre-conditioners with structure, and show how to make the update inverse-free.

Removing Inversions Through Variational Gaussian Approximation

A framework for root-free and inverse-free methods through Gaussian approximations

: wg@ay

Newton’s Method

Gaussian
q(w; p, S)

Newton on £(u) = Eyyu.00) [€(W)]

!

NGD on Eu-y)¢(w)] — entropy <= KL(q(w; )| exp(—£(w)
e delta evaluation i

© T=15}

Gaussian approximation

Our framework:

* Preconditioner S: inverse covariance
 Curvature 7 = V2(: partial derivative w.r.t. covariance

Inverse-free methods via preconditioner invariance:

+ Inverse-free: NGD on {1, S~ '} or {u, B}, where S™' = BB’

- Arbitrary curvature : e.g., H = agg'; (sum: o = 1), (average: o = B)

» Generic structural projection via chain rule: A as a partial derivative

» Kronecker structured: Root-free Shampoo as NGD on {, B;,B,}, where S™' = (B1B, ) @ (B,B,)




