
LATEX TikZposter

Can We Remove the Square-Root in Adaptive Gradient Methods?
A Second-Order Perspective

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard Turner, Alireza Makhzani

Can We Remove the Square-Root in Adaptive Gradient Methods?
A Second-Order Perspective

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard Turner, Alireza Makhzani

Many adaptive methods can be interpreted as diagonal second-order methods with an
extra square root. We observe that removing the root, thus strengthening the second-order

perspective, does not harm their performance when proper changes are made.

Removing the root also allows us to design
matrix methods that don’t require inversions,

e.g. a faster version of Shampoo.

Which Square Root Are We Talking About?

Many adaptive optimizers use statistics S in the form of the gradient outer product (GOP)
gg⊤. The inverse square root of these statistics is then used to update the weights.

AdaGrad:
S← S + β2gg⊤

µ← µ− β1diag(S)−1/2g
RF-AdaGrad (ours):

S← S + β2αgg⊤

µ← µ− β1diag(S)−1g

RmsProp:
S← (1− β2)S + β2gg⊤

µ← µ− β1diag(S)−1/2g
RF-RmsProp:

S← (1− β2)S + β2αgg⊤

µ← µ− β1diag(S)−1g

Why remove it?
•Adaptive methods under-perform SGD on CNNs. Could it be due to the root?
•Make them more similar to natural-gradient methods that use the empirical Fisher (EF)

Our contributions
1. [Empirical] In modern training setups, root-free methods perform as well as SGD on CNNs
2. [Theoretical] Provide a clean interpretation of gg⊤ as EF and preserve invariance
3. [Practical] Removing roots and inversions in methods with non-diagonal S

Clean Interpretation: Empirical Fisher as (Scaled) GOP

Standard empirical Fisher
Distribution factorized over individual labels
N∑
i=1

Eyi∼p(yi|xi)
[
∇µ log p(yi | xi)∇⊤µ log p(yi | xi)

]
expectation approximation

N∑
i=1

[
∇µ log p(yi | xi)∇⊤µ log p(yi | xi)

]
=

N∑
i=1

gigT
i

Our empirical Fisher
Distribution over joint labels

Ey∼p(y|X)
[
∇µ log p(y | X)∇⊤µ log p(y | X)

]
expectation approximation

∇µ log p(y | X)∇⊤µ log p(y | X) = gg⊤

Empirical Observations When Removing the Square Root

Simply removing the root does not improve the performance of root-free methods.

50 100 150 200

Epoch

20

30

40

50

60

T
es

t
E

rr
o
r

DenseNet121-CIFAR100

Root-based (RMSProp)

SGD

Root-free (RMSProp)

50 100 150 200 250 300

Epoch

20

30

40

50

60
SwinViT-ImageWoof10

20 40 60 80 100 120

Epoch

15

20

25

30

35

40

45
GNN-OgbnProducts

Through a second-order perspective, we identify some fixes to make them work well.

50 100 150 200

Epoch

20

30

40

50

60

T
es

t
E

rr
o
r

DenseNet121-CIFAR100

Root-based (AdamW)

SGD

Root-free (RMSProp)

50 100 150 200 250 300

Epoch

20

30

40

50

60
SwinViT-ImageWoof10

20 40 60 80 100 120

Epoch

15

20

25

30

35
GNN-OgbnProducts

1. [Standard nowadays] Non-constant learning rate schedule
2. [Bottom left box] Additional scaling, because densities for the Fisher must be normalized

(α = 1 for sum; α = B for average)
3. [Bottom right box] Non-zero init. of preconditioner S, because it can be viewed as inverse covariance of a

Gaussian

Inverse- and root-free updates accelerate
Kronecker-based methods based on gg⊤ in
half precision.

Want to try the optimizer?
pip install sirfhshampoo

Full-matrix and Kronecker-structured Adaptive Methods

Full-matrix methods aim to use S rather than diag(S), e.g. full-matrix AdaGrad:
S← S + β2gg⊤ µ← µ− β1S−1/2g

But S is usually infeasible to store, which is why most methods impose additional
structure in their pre-conditioner, e.g. Kronecker structure in Shampoo (G := Mat(g)):

S1← (1− β2)S1+GG⊤

S2← (1− β2)S2+G⊤G
µ← µ− β1(S

1/2
1 ⊗ S1/2

2)−1/2g

As the pre-conditioner now differs from gg⊤, we need to decouple the concepts of
pre-conditioner and curvature approximation.

We provide a unified recipe to incorporate any curvature info (e.g., gg⊤) into
pre-conditioners with structure, and show how to make the update inverse-free.

Removing Inversions Through Variational Gaussian Approximation

A framework for root-free and inverse-free methods through Gaussian approximations

neg-log-Gauss.

Gaussian

Gaussian approximation

 Newton’s Method

Newton on

NGD on
● delta evaluation
●

Our framework:
• Preconditioner S: inverse covariance
•CurvatureH = ∇2

µℓ: partial derivative w.r.t. covariance

Inverse-free methods via preconditioner invariance:
• Inverse-free: NGD on {µ,S−1} or {µ,B}, where S−1 = BBT

•Arbitrary curvature : e.g.,H = αgg⊤; (sum: α = 1), (average: α = B)
•Generic structural projection via chain rule: H as a partial derivative
• Kronecker structured: Root-free Shampoo as NGD on {µ,B1,B2}, where S−1 = (B1B⊤1)⊗ (B2B⊤2)

