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Research statement

Abstract: Contemporary deep learning is powered
by first-order methods that rely on the gradient. This
is reflected in popular deep learning libraries which
prioritize its computation. However, it narrows re-
search to focus on variants of gradient descent.

To advance the field, we need to leverage
information beyond the gradient (Figure 1).

My prior work demonstrates that rich informa-
tion beyond the gradient is affordable (Figure 2).
To reveal its under-unexplored potential, I want to
use it to design novel methods and work on next-
generation ML frameworks to push their efficient re-
alization forward.

1 Problem statement

Deep learning relies on the gradient. Training neural
networks is one of the most important and challenging,
yet poorly understood deep learning tasks. We seek to
minimize a non-convex empirical risk implied by data
D = {(xn,yn)}n and a loss function ℓ over an ex-
tremely high-dimensional parameter space of a network
fθ through noisy observations on a mini-batch B ∼ D,

L(θ) = 1
|B|

∑
(xn,yn)∈B ℓ(fθ(xn),yn) . (1)

Current state-of-the-art deep learning optimizers use the
mini-batch gradient ∇θL(θ) which can be efficiently

stored and automatically computed via reverse-mode au-
tomatic differentiation, aka backpropagation [37]. Popu-
lar deep learning libraries like PyTorch [32, 33] and Ten-
sorFlow [1] focus on efficiently computing the gradient
via backpropagation. However, this has caused research
to focus on gradient-based update rules and resulted in
more than 100 gradient descent variants [39]. Large-
scale comparisons find that

Despite efforts by the community, there is
currently no method that clearly dominates
the competition. [. . . ] tuning helps about as
much as trying other optimizers. [39]

How can we enable novel research? I believe that focus-
ing on the gradient is not enough: We need to incor-
porate more information to build better algorithms.

Higher-order information & challenges. Such quan-
tities can be of statistical or geometrical nature (see Fig-
ure 1): Since a mini-batch gradient ∇θL(θ) is the empir-
ical mean of the distribution {∇θℓn(θ)}n of per-sample
gradients, higher-order statistical moments capture
noise of that distribution and the reliability of its mean.
Higher-order derivatives enable richer local approx-
imations of the loss landscape’s geometry, for instance
through curvature in form of the Hessian ∇2

θL(θ). How-
ever, efficiently computing with them is challeng-
ing. Their explicit representations consume multiples
of batch size or parameter dimension more memory

∇2
θL(θ)

{∇θℓn(θ)}∇θL(θ)

{∇2
θ ℓn(θ)}
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statistical info Figure 1: Beyond the gradient.
Higher-order statistical moments
of per-sample quantities encode
information about noise in the
mini-batch. Second-order deriva-
tives contain additional informa-
tion about the loss landscape’s ge-
ometry. Figure inspired by [7].
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Figure 2: Rich information beyond the gradient is affordable. Run time comparison of computing (i) only
the gradient (ref.) and (ii) the gradient with PyTorch and extensions with BackPACK. The architecture is a
convolutional neural network (3C3D, CIFAR10) from DeepOBS [40]. Most quantities add little overhead.

compared to a gradient. Therefore, practical methods
rely on implicit schemes, like matrix-free multiplica-
tion [35, 42], and light-weight structured approxima-
tions, like diagonal or Kronecker matrices [29]. But due
to their more complicated nature, efficient implementa-
tion is often burdensome and complex.

Under-explored potential. This complicates experi-
mentation and code sharing, e.g. for second-order meth-
ods in deep learning. Although these methods have been
continuously investigated [4, 2, 28, 29, 48, 21, 17, 45],
the standard optimizers remain first-order methods,
in stark contrast to other domains where second-
order methods are the default (convex optimization,
generalized linear models). There may be scientific rea-
sons why they do not work well in the deep learning
setting. But one of the main hindrances to further ex-
plore their utility has been that they are so complicated
to implement that practitioners barely try them out.1

2 Scientific achievements

During my PhD, I worked on easing experimentation
with higher-order information and improving neural net-
work training through monitoring. I developed autodiff
tools that efficiently extract rich information beyond
the gradient by extending gradient backpropagation
[12, 13] in ML libraries, see Figure 2. This functionality
helps to debug neural network training [41] and to com-
pute with higher-order information in novel ways [14].

1For example, there are no fully-featured versions of the popular
like Hessian-free [28] and K-FAC [29] optimizer for PyTorch [31].

2.1 Extending backpropagation to the Hessian

Gradient backpropagation is efficient, automated,
and extensible. For sequential architectures, this car-
ries over to second-order derivatives [12]. We can see
this by considering the compute graph of such a layered
model fθ = f
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It fully aligns the computation of local Hessians with
gradients and unifies the view on block-diagonal cur-
vature approximations like the block-diagonal gener-
alized Gauss-Newton (GGN) [42], Fisher [2], and its
Kronecker-factorized approximations [29, 19, 6, 11].



2.2 Packing more into backprop

The BackPACK [13] library provides efficient access
to various deep learning quantities through imple-
menting the insights on extended backpropagation for
the Hessian on top of PyTorch. During a standard back-
ward pass that computes the average gradient, it extracts

• per-sample gradients & gradient statistics, and
• approximate second-order derivatives in the form

of diagonal and Kronecker-factorized curvature,

which often adds only little overhead (Figure 2). Back-
PACK easily integrates into existing code and simplifies
experimentation with the above quantities: It powers
works on Bayesian neural networks [15, 23], out-of-
distribution generalization [20, 36], and differential
privacy [46], as well as my own research (Sections 2.3
and 2.4). More than two years after its release, it is still
actively used, with roughly 400 downloads last week.

2.3 Enabling a closer look into neural nets

Higher-order information as provided by BackPACK is
valuable to guide the training of neural networks. Com-
mon methods for real-time training diagnostics, such
as monitoring the loss, are limited because they only
indicate whether a model is training, but not why.
Cockpit [41] enables a closer look into neural net-
works during training. The live-monitoring tool visu-
alizes established, recently proposed [27, 3, 9, 5, 44,
43, 24], and novel summary statistics that are efficiently
computed by BackPACK. It allows to identify common
bugs in the machine learning pipeline, such as im-
proper data pre-processing or vanishing gradients, but
also to guide learning rate selection, and to study im-
plicit regularization [30, 18]. This showcases the po-
tential of higher-order information to assist practi-
tioners to better understand their model.

2.4 Novel ways to compute with curvature

BackPACK’s extended autdiff functionality also en-
ables algorithmic advances to tackle limitations of ex-
isting curvature proxies [14]: Diagonal or Kronecker-
factorized curvatures are (i) not agnostic of noise in the
mini-batch, (ii) strict approximations that do not become
exact in any limit, and (iii) restricted to the block diago-
nal, ignoring curvature effects between layers.
This can be addressed through the GGN’s low-rank
structure, which allows for exact computation with the

full—rather than block-diagonal—matrix, and princi-
pled approximations to reduce cost in exchange for ac-
curacy. It also enables efficient computation of spectral
properties, as well as directional gradients and cur-
vatures on a per-sample basis that quantify noise not
only for the first, but also the second derivative. Mon-
itoring this noise through signal-to-noise-ratios helps
understand its characteristics in deep learning [16] and
to identify challenges for optimization and generaliza-
tion from the interplay of noise and curvature [43].

3 Future research

Vision. Deep learning needs more than just the gra-
dient. My goal is to reveal the potential of higher-
order information for building better training
methods and push forward the development of
ML autodiff in next-generation frameworks like
JAX [8] to efficiently realize them.

Noise-aware second-order methods. Newton steps
are powerful, but their stability is strongly affected
by noise—one corrupted step might undo all previous
progress. Improving their stability is thus one key chal-
lenge to make them work in the mini-batch setting. To
do that, however, we need to quantify noise in the mini-
batch. But currently popular curvature proxies used in
second-order methods are not noise-agnostic. There-
fore, we need curvature approximations that pro-
vide access to gradient and curvature noise, for in-
stance through per-sample information by leveraging the
GGN’s low-rank structure [14]. I want to use such in-
formation to develop noise-aware stabilizing mecha-
nisms for Newton steps, like damping.

Optimizing run time & advancing autodiff for ML.
In contrast to gradient-based methods, run time perfor-
mance of higher-order methods can still be signifi-
cantly improved: BackPACK outperforms naive imple-
mentations and achieves practical overheads, but relies
on PyTorch’s Python API and therefore regularly per-
forms unnecessary operations. Recent advances in auto-
matic differentiation, like JAX [8] and functorch [22],
allow for more efficient implementations.
Even better performance can be achieved through
linear algebra tricks, like properties of the Kronecker
product [25] and matrix decompositions [e.g. 13, 14].
Recent work suggests that there is potential for improve-
ment as a number of these optimizations are not yet re-

https://pypistats.org/packages/backpack-for-pytorch


alized [38]. I want to automate the optimization of op-
erations in second-order methods by incorporating
these common tricks for higher-order information
into JAX. This further reduces the overhead of second-
order methods stemming from poor implementation, and
makes these performance gains widely available to the
ML community.

Closing remarks. Apart from my scientific goals, my
connection to MLCommons benchmark experts [40,
39], who work on measuring algorithmic progress in
neural network training, will be helpful to evaluate the
developed methods, discuss interfaces to simplify their
usage, and thereby make them more practical.
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