
Deep Learning Needs More Than Just the Gradient

Felix Dangel

Research statement

Abstract: Contemporary deep learning is powered
by first-order methods that rely on the gradient. This
is reflected in popular deep learning libraries which
prioritize its computation. However, it narrows re-
search to focus on variants of gradient descent.

To advance the field, we need to leverage
information beyond the gradient (Figure 1).

My prior work demonstrates that rich informa-
tion beyond the gradient is affordable (Figure 2).
To reveal its under-unexplored potential, I want to
use it to design novel methods and work on next-
generation ML frameworks to push their efficient re-
alization forward.

1 Problem statement

Deep learning relies on the gradient. Training neural
networks is one of the most important and challenging,
yet poorly understood deep learning tasks. We seek to
minimize a non-convex empirical risk implied by data
D = {(xn,yn)}n and a loss function ℓ over an ex-
tremely high-dimensional parameter space of a network
fθ through noisy observations on a mini-batch B ∼ D,

L(θ) = 1
|B|

∑
(xn,yn)∈B ℓ(fθ(xn),yn) . (1)

Current state-of-the-art deep learning optimizers use the
mini-batch gradient ∇θL(θ) which can be efficiently

stored and automatically computed via reverse-mode au-
tomatic differentiation, aka backpropagation [37]. Popu-
lar deep learning libraries like PyTorch [32, 33] and Ten-
sorFlow [1] focus on efficiently computing the gradient
via backpropagation. However, this has caused research
to focus on gradient-based update rules and resulted in
more than 100 gradient descent variants [39]. Large-
scale comparisons find that

Despite efforts by the community, there is
currently no method that clearly dominates
the competition. [. . .] tuning helps about as
much as trying other optimizers. [39]

How can we enable novel research? I believe that focus-
ing on the gradient is not enough: We need to incor-
porate more information to build better algorithms.

Higher-order information & challenges. Such quan-
tities can be of statistical or geometrical nature (see Fig-
ure 1): Since a mini-batch gradient ∇θL(θ) is the empir-
ical mean of the distribution {∇θℓn(θ)}n of per-sample
gradients, higher-order statistical moments capture
noise of that distribution and the reliability of its mean.
Higher-order derivatives enable richer local approx-
imations of the loss landscape’s geometry, for instance
through curvature in form of the Hessian ∇2

θL(θ). How-
ever, efficiently computing with them is challeng-
ing. Their explicit representations consume multiples
of batch size or parameter dimension more memory

∇2
θL(θ)

{∇θℓn(θ)}∇θL(θ)

{∇2
θ ℓn(θ)}

geometr
ica

l info

statistical info Figure 1: Beyond the gradient.
Higher-order statistical moments
of per-sample quantities encode
information about noise in the
mini-batch. Second-order deriva-
tives contain additional informa-
tion about the loss landscape’s ge-
ometry. Figure inspired by [7].

Grad (ref.) 2nd Moment Batch L2 DiagGGN-MC KFAC Indiv. Grad KFLR DiagGGN
0

20

40

Ti
m

e
[m

s]
Batch = 32 48 64

Figure 2: Rich information beyond the gradient is affordable. Run time comparison of computing (i) only
the gradient (ref.) and (ii) the gradient with PyTorch and extensions with BackPACK. The architecture is a
convolutional neural network (3C3D, CIFAR10) from DeepOBS [40]. Most quantities add little overhead.

compared to a gradient. Therefore, practical methods
rely on implicit schemes, like matrix-free multiplica-
tion [35, 42], and light-weight structured approxima-
tions, like diagonal or Kronecker matrices [29]. But due
to their more complicated nature, efficient implementa-
tion is often burdensome and complex.

Under-explored potential. This complicates experi-
mentation and code sharing, e.g. for second-order meth-
ods in deep learning. Although these methods have been
continuously investigated [4, 2, 28, 29, 48, 21, 17, 45],
the standard optimizers remain first-order methods,
in stark contrast to other domains where second-
order methods are the default (convex optimization,
generalized linear models). There may be scientific rea-
sons why they do not work well in the deep learning
setting. But one of the main hindrances to further ex-
plore their utility has been that they are so complicated
to implement that practitioners barely try them out.1

2 Scientific achievements

During my PhD, I worked on easing experimentation
with higher-order information and improving neural net-
work training through monitoring. I developed autodiff
tools that efficiently extract rich information beyond
the gradient by extending gradient backpropagation
[12, 13] in ML libraries, see Figure 2. This functionality
helps to debug neural network training [41] and to com-
pute with higher-order information in novel ways [14].

1For example, there are no fully-featured versions of the popular
like Hessian-free [28] and K-FAC [29] optimizer for PyTorch [31].

2.1 Extending backpropagation to the Hessian

Gradient backpropagation is efficient, automated,
and extensible. For sequential architectures, this car-
ries over to second-order derivatives [12]. We can see
this by considering the compute graph of such a layered
model fθ = f

(L)

θ(L) ◦ · · · ◦ f
(1)

θ(1) with parameters θ(1,...,L),

θ(1) θ(2) . . . θ(L) yn

f (1)
y f (2)

y f (L)
y ℓ

y
z
(0)
n −→ z

(1)
n −→ z

(2)
n −→ . . . −→ z

(L)
n −→ ℓn

Inputs xn = z
(0)
n map to predictions fθ(xn) = z

(L)
n via

hidden features z(1,...,L−1)
n .

Backpropagation recovers the layer-wise gradients
∇θ(L,...,1)ℓn by propagating ∇

z
(L)
n

ℓn from the root to the
leafs via vector-Jacobian products,

∇•ℓn = J•z
(l)
n

⊤∇
z
(l)
n
ℓn

• ∈ {z(l−1)
n ,θ(l)}

l = L, . . . , 1

Hessian backpropagation recovers the per-layer Hes-
sians ∇2

θ(L,...,1)ℓn, propagating the Hessian ∇2

z
(L)
n

ℓn via

∇2
• ℓn = J•z

(l)
n

⊤∇2

z
(l)
n
ℓn J•z

(l)
n +

∑
k ∇2

• z
(l)
n,k ∇z

(l)
n
ℓn .

It fully aligns the computation of local Hessians with
gradients and unifies the view on block-diagonal cur-
vature approximations like the block-diagonal gener-
alized Gauss-Newton (GGN) [42], Fisher [2], and its
Kronecker-factorized approximations [29, 19, 6, 11].

2.2 Packing more into backprop

The BackPACK [13] library provides efficient access
to various deep learning quantities through imple-
menting the insights on extended backpropagation for
the Hessian on top of PyTorch. During a standard back-
ward pass that computes the average gradient, it extracts

• per-sample gradients & gradient statistics, and
• approximate second-order derivatives in the form

of diagonal and Kronecker-factorized curvature,

which often adds only little overhead (Figure 2). Back-
PACK easily integrates into existing code and simplifies
experimentation with the above quantities: It powers
works on Bayesian neural networks [15, 23], out-of-
distribution generalization [20, 36], and differential
privacy [46], as well as my own research (Sections 2.3
and 2.4). More than two years after its release, it is still
actively used, with roughly 400 downloads last week.

2.3 Enabling a closer look into neural nets

Higher-order information as provided by BackPACK is
valuable to guide the training of neural networks. Com-
mon methods for real-time training diagnostics, such
as monitoring the loss, are limited because they only
indicate whether a model is training, but not why.
Cockpit [41] enables a closer look into neural net-
works during training. The live-monitoring tool visu-
alizes established, recently proposed [27, 3, 9, 5, 44,
43, 24], and novel summary statistics that are efficiently
computed by BackPACK. It allows to identify common
bugs in the machine learning pipeline, such as im-
proper data pre-processing or vanishing gradients, but
also to guide learning rate selection, and to study im-
plicit regularization [30, 18]. This showcases the po-
tential of higher-order information to assist practi-
tioners to better understand their model.

2.4 Novel ways to compute with curvature

BackPACK’s extended autdiff functionality also en-
ables algorithmic advances to tackle limitations of ex-
isting curvature proxies [14]: Diagonal or Kronecker-
factorized curvatures are (i) not agnostic of noise in the
mini-batch, (ii) strict approximations that do not become
exact in any limit, and (iii) restricted to the block diago-
nal, ignoring curvature effects between layers.
This can be addressed through the GGN’s low-rank
structure, which allows for exact computation with the

full—rather than block-diagonal—matrix, and princi-
pled approximations to reduce cost in exchange for ac-
curacy. It also enables efficient computation of spectral
properties, as well as directional gradients and cur-
vatures on a per-sample basis that quantify noise not
only for the first, but also the second derivative. Mon-
itoring this noise through signal-to-noise-ratios helps
understand its characteristics in deep learning [16] and
to identify challenges for optimization and generaliza-
tion from the interplay of noise and curvature [43].

3 Future research

Vision. Deep learning needs more than just the gra-
dient. My goal is to reveal the potential of higher-
order information for building better training
methods and push forward the development of
ML autodiff in next-generation frameworks like
JAX [8] to efficiently realize them.

Noise-aware second-order methods. Newton steps
are powerful, but their stability is strongly affected
by noise—one corrupted step might undo all previous
progress. Improving their stability is thus one key chal-
lenge to make them work in the mini-batch setting. To
do that, however, we need to quantify noise in the mini-
batch. But currently popular curvature proxies used in
second-order methods are not noise-agnostic. There-
fore, we need curvature approximations that pro-
vide access to gradient and curvature noise, for in-
stance through per-sample information by leveraging the
GGN’s low-rank structure [14]. I want to use such in-
formation to develop noise-aware stabilizing mecha-
nisms for Newton steps, like damping.

Optimizing run time & advancing autodiff for ML.
In contrast to gradient-based methods, run time perfor-
mance of higher-order methods can still be signifi-
cantly improved: BackPACK outperforms naive imple-
mentations and achieves practical overheads, but relies
on PyTorch’s Python API and therefore regularly per-
forms unnecessary operations. Recent advances in auto-
matic differentiation, like JAX [8] and functorch [22],
allow for more efficient implementations.
Even better performance can be achieved through
linear algebra tricks, like properties of the Kronecker
product [25] and matrix decompositions [e.g. 13, 14].
Recent work suggests that there is potential for improve-
ment as a number of these optimizations are not yet re-

https://pypistats.org/packages/backpack-for-pytorch

alized [38]. I want to automate the optimization of op-
erations in second-order methods by incorporating
these common tricks for higher-order information
into JAX. This further reduces the overhead of second-
order methods stemming from poor implementation, and
makes these performance gains widely available to the
ML community.

Closing remarks. Apart from my scientific goals, my
connection to MLCommons benchmark experts [40,
39], who work on measuring algorithmic progress in
neural network training, will be helpful to evaluate the
developed methods, discuss interfaces to simplify their
usage, and thereby make them more practical.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.

[2] S.-I. Amari. Natural gradient works efficiently in learn-
ing. Neural Computation, 10, 2000.

[3] L. Balles, J. Romero, and P. Hennig. Coupling adap-
tive batch sizes with learning rates. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2017.

[4] S. Becker and Y. Lecun. Improving the convergence of
back-propagation learning with second-order methods.
1989.

[5] R. Bollapragada, R. H. Byrd, and J. Nocedal. Adaptive
sampling strategies for stochastic optimization. SIAM
Journal on Optimization, 28, 2017.

[6] A. Botev, H. Ritter, and D. Barber. Practical Gauss-
Newton optimisation for deep learning. In International
Conference on Machine Learning (ICML), 2017.

[7] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. SIAM Review
(SIREV), 60, 2016.

[8] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, and S. Wanderman-Milne.
JAX: composable transformations of Python+NumPy
programs, 2018.

[9] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sam-
ple size selection in optimization methods for machine
learning. Math. Program., 134, 2012.

[10] R. T. Q. Chen, D. Choi, L. Balles, D. Duvenaud, and
P. Hennig. Self-tuning stochastic optimization with
curvature-aware gradient filtering. Advances in Neural
Information Processing Systems (NeurIPS), Workshop I
Can’t Believe It’s Not Better!, 2020.

[11] S.-W. Chen, C.-N. Chou, and E. Chang. BDA-PCH:
Block-diagonal approximation of positive-curvature
Hessian for training neural networks. 2018.

[12] F. Dangel, S. Harmeling, and P. Hennig. Modular block-
diagonal curvature approximations for feedforward ar-
chitectures. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2020.

[13] F. Dangel, F. Kunstner, and P. Hennig. BackPACK:
Packing more into backprop. In International Confer-
ence on Learning Representations (ICLR), 2020.

[14] F. Dangel, L. Tatzel, and P. Hennig. ViViT: Curvature
access through the generalized Gauss-Newton’s low-
rank structure. 2021.

[15] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen,
M. Bauer, and P. Hennig. Laplace redux - effortless
bayesian deep learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

[16] F. Faghri, D. Duvenaud, D. J. Fleet, and J. Ba. A study
of gradient variance in deep learning, 2020.

[17] M. Gargiani, A. Zanelli, M. Diehl, and F. Hutter. On
the promise of the stochastic generalized Gauss-Newton
method for training DNNs, 2020.

[18] B. Ginsburg. On regularization of gradient descent,
layer imbalance and flat minima. 2020.

[19] R. Grosse and J. Martens. A kronecker-factored approx-
imate Fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning (ICML), 2016.

[20] I. Gulrajani and D. Lopez-Paz. In search of lost domain
generalization. In International Conference on Learning
Representations (ICLR), 2021.

[21] J. F. Henriques, S. Ehrhardt, S. Albanie, and A. Vedaldi.
Small steps and giant leaps: Minimal Newton solvers
for deep learning, 2018.

[22] R. Z. Horace He. functorch: JAX-like composable func-
tion transforms for PyTorch, 2021.

[23] A. Immer, M. Korzepa, and M. Bauer. Improving pre-
dictions of Bayesian neural nets via local linearization.
In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2021.

https://mlcommons.org/en/groups/research-algorithms/

[24] J. Liu, Y. Bai, G. Jiang, T. Chen, and H. Wang. Under-
standing why neural networks generalize well through
GSNR of parameters. In International Conference on
Learning Representations (ICLR), 2020.

[25] C. F. Loan. The ubiquitous Kronecker product. Journal
of Computational and Applied Mathematics, 2000.

[26] D. Maclaurin, D. Duvenaud, M. Johnson, and R. P.
Adams. Autograd: Reverse-mode differentiation of na-
tive Python, 2015.

[27] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig.
Early stopping without a validation set, 2017.

[28] J. Martens. Deep learning via Hessian-free optimiza-
tion. In International Conference on Machine Learning
(ICML), 2010.

[29] J. Martens and R. Grosse. Optimizing neural networks
with Kronecker-factored approximate curvature. In In-
ternational Conference on Machine Learning (ICML),
2015.

[30] R. Mulayoff and T. Michaeli. Unique properties of flat
minima in deep networks. In International Conference
on Machine Learning (ICML), 2020.

[31] M. Novik. torch-optimizer – collection of optimization
algorithms for PyTorch, 2020.

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in PyTorch. In NIPS
Workshop on Autodiff, 2017.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems (NeurIPS). 2019.

[34] A. Paszke, D. Johnson, D. Duvenaud, D. Vytiniotis,
A. Radul, M. Johnson, J. Ragan-Kelley, and D. Maclau-
rin. Getting to the point. index sets and parallelism-
preserving autodiff for pointful array programming. In
International Conference on Functional Programming,
2021.

[35] B. A. Pearlmutter. Fast exact multiplication by the Hes-
sian. Neural Computation, 6, 1994.

[36] A. Rame, C. Dancette, and M. Cord. Fishr: Invari-
ant gradient variances for out-of-distribution generaliza-
tion. In International Conference on Machine Learning
(ICML), 2022.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In D. E. Rumelhart and J. L. Mcclelland, editors,
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations,
pages 318–362. MIT Press, Cambridge, MA, 1986.

[38] A. Sankaran, N. A. Alashti, C. Psarras, and P. Bientinesi.
Benchmarking the linear algebra awareness of Tensor-
Flow and PyTorch, 2022.

[39] R. M. Schmidt, F. Schneider, and P. Hennig. Descending
through a crowded valley - benchmarking deep learn-
ing optimizers. In International Conference on Machine
Learning (ICML), 2021.

[40] F. Schneider, L. Balles, and P. Hennig. DeepOBS: A
deep learning optimizer benchmark suite. In Interna-
tional Conference on Learning Representations (ICLR),
2019.

[41] F. Schneider, F. Dangel, and P. Hennig. Cockpit: A prac-
tical debugging tool for the training of deep neural net-
works. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[42] N. N. Schraudolph. Fast curvature matrix-vector prod-
ucts for second-order gradient descent. Neural compu-
tation, 14, 2002.

[43] V. Thomas, F. Pedregosa, B. van Merriënboer, P.-A.
Manzagol, Y. Bengio, and N. L. Roux. On the interplay
between noise and curvature and its effect on optimiza-
tion and generalization. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020.

[44] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney.
PyHessian: Neural networks through the lens of the
Hessian. In IEEE International Conference on Big Data,
2020.

[45] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer,
and M. W. Mahoney. Adahessian: An adaptive second
order optimizer for machine learning, 2020.

[46] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine,
K. Prasad, M. Malek, J. Nguyen, S. Ghosh, A. Bharad-
waj, J. Zhao, G. Cormode, and I. Mironov. Opa-
cus: User-friendly differential privacy library in py-
torch. In Advances in Neural Information Process-
ing Systems (NeurIPS), Workshop Privacy in Machine
Learning, 2021.

[47] G. Zhang, J. Martens, and R. B. Grosse. Fast conver-
gence of natural gradient descent for over-parameterized
neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[48] H. Zhang, C. Xiong, J. Bradbury, and R. Socher. Block-
diagonal Hessian-free optimization for training neural
networks, 2017.

	Problem statement
	Scientific achievements
	Extending backpropagation to the Hessian
	Packing more into backprop
	Enabling a closer look into neural nets
	Novel ways to compute with curvature

	Future research

